If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-948=0
a = 1; b = 4; c = -948;
Δ = b2-4ac
Δ = 42-4·1·(-948)
Δ = 3808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3808}=\sqrt{16*238}=\sqrt{16}*\sqrt{238}=4\sqrt{238}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{238}}{2*1}=\frac{-4-4\sqrt{238}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{238}}{2*1}=\frac{-4+4\sqrt{238}}{2} $
| 1/2y+3=10 | | 2.8x+10=2.4 | | Y^2=4x+16 | | 12m+10=8m+20 | | B=18x | | h/21=18 | | 6r^2-3=7r | | 22j=374 | | 24t=912 | | 6.25x+12=-12+11x-12 | | z=-42.5+8.5 | | -9=+2x | | 54+5u=11u | | 7w=w-40 | | 5.612.7=4.9x | | 7x+8=-26 | | -3x-2(2x-29)=-26 | | 2x-8+41=83 | | 31=3x-20 | | K=-4l+14 | | 2(1/2x-4+1=-3-1/2x) | | 2(1/2x-4+1=-3-1/2x | | 720=9x-19+111+5x+8+128+7x+3 | | 9m+7=8 | | 3(x+7=84 | | 7x-5+23=67 | | 3(12x-2.5)=10 | | 11y+13=90 | | 5y+30=90 | | (21x-19=7x+31) | | 30+.125x+.25x=x | | 2x-1+x+2=4x-7 |